

		DPP – 1 (C	ircular Motion)		
Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/39			
Video Solution on YouTube:-		https://youtu.be/3KMTUMzkQjk			
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/42			
Q 1.	The angular velocity when its angular acce (a) 0.25 sec (c) 1 sec	of a particle is g eleration become	given by $\omega = 1.5t - 3t^2 + 2$, Find the time es zero: (b) 0.5 sec (d) 2 sec		
Q 2.	A wheel rotates with the time and a and b a equations for the angu (a) $\omega = \omega_0 + 4at^4 - (c) \omega = at^4 - bt^3$	an angular acce are constants. If ular speed: - 3bt ³	leration given by $\alpha = 4at^3 - 3bt^2$, where t is the wheel has initial angular speed ω_0 , write the (b) $\omega = \omega_0 + at^4 - bt^3$ (d) $\omega = 4at^4 - 3bt^3$		
Q 3.	A grinding wheel attained a velocity of 20 rad/sec in 5 sec starting from rest. Find the number of revolutions made by the wheel. (a) $\pi/25$ revolutions (b) $1/\pi$ revolutions (c) $25/\pi$ revolutions (d) none of these				
Q 4.	The magnitude of dis constant angular spee (a) 2 a sin ωt (c) 2a cos ωt	placement of a pair of a p	particle moving in a circle of radius with a time t as: (b) 2a sin (ωt/2) (d) 2a cos (ωt/2)		
Q 5.	The ratio of angular s (a) 1 : 12 (c) 12 : 1	peeds of minute	es hand and hour hand of a watch is - (b) 6 : 1 (d) 1 : 6		
Q 6.	The angular displacer angular velocity (in ra (a) 27 (c) 15	ment of a particl ad/s) at t = 2 sec	e is given by $\theta = (t^3 + t^2 + t + 1)$ rad then, its is: (b) 17 (d) 16		
Q 7.	The angular displacer where θ is in radian a acceleration of particl (a) 1 rad/s, 5 rad/s ² (c) 5 rad/s, 1 rad/s ²	ment of a particl and 't' is in seco le at the end of t	The performing circular motion is $\theta = \left(\frac{t^3}{60} - \frac{t}{4}\right)$ and .Then the angular velocity and angular 5 s will be: (b) 1 rad/s, 0.5 rad/s ² (d) 0.1 rad/s, 5 rad/s ²		
Q 8.	What is the angular becomes 4 times of it (a) $0.5 rad/s^2$	acceleration of s initial angular	a particle if the angular velocity of a particle velocity 1 rad/s in 2 seconds: (b) $1 rad/s^2$		

(c) 1.5 rad/s^2

(d) $2 rad/s^2$

- Q 9. A fan is rotating with angular velocity 100 rev/s. Then it switched off. It takes 5 min to stop. Find the total number of revolution made before the fan stops: (assume uniform angular retardation)
 (a) 9000 rev
 (b) 13000 rev
 - (c) 15000 rev (d) 4500 rev
- Q 10. The angular acceleration of a fan is $\alpha = -\frac{3}{2}t^2$. At the initial moment, its angular velocity $\omega = 10$ rad/s and has an angular position of 1 rad. Choose the incorrect option:
 - (a) its angular velocity at t=1sec. is 9.5 rad/s
 - (b) its angular position at t=2 sec. is 5 rad
 - (c) its angular velocity at t=2 sec. is 6 rad/s
 - (d) its angular position at t=1 sec. is $\frac{87}{8}$ rad

Answer Key

Q.1 a	Q.2 b	Q.3 c	Q.4 b	Q.5 c
Q.6 b	Q.7 b	Q.8 c	Q.9 c	Q.10 b

Plus leaderboard

Based on educator activity in last 30 days

Prateek Jain 11.4M mins

Ajay Mishra (Akm) 6.3M mins

Shubh Karan Choudhary (Skc) 5.9M mins

Dr Amit Gupta 5.5M mins

Ramesh Sharda 4.9M mins

Sandeep Nodiyal 4.8M mins

Shailendra Tanwar

Vishal Vivek 2.7M mins

Saurabh Sharma 2.6M mins

12

Dr SK Singh 2.6M mins

Nishant Varshney

PHYSICS

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

Written Solution

DPP-1 Angular displacement, velocity and angular acceleration and kinematics of circular motion By Physicsaholics Team

Ans. b

Solution: 2

Solution: 3 1 x = 4 grad/82 20 + U X 5 = 50 rad NOW 1×4 cost 0 11 5 50 stad. 4 × 15 7 OG 0 2 of nevolutions = mmor 50 1 21 25 m = Ans. c

Solution: 7

Ans. b

Ans. c

Ans. b

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/39

Video Solution on YouTube:-

https://youtu.be/3KMTUMzkQjk

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/42

CLICK

